Theory

Single-Phase Pipe Flow

Introduction

Single-phase pipe flow describes the movement of a single fluid (liquid or gas) through pipelines. This is the foundation for:

  • Surface flowlines β€” horizontal or near-horizontal transport
  • Injection tubing β€” water or gas injection wells
  • Single-phase risers β€” gas-only or water-only risers
  • Process piping β€” facilities and plant pipelines

The pressure drop in single-phase flow has two components:

  1. Frictional losses β€” energy dissipated due to fluid viscosity and pipe wall roughness
  2. Elevation changes β€” potential energy changes due to vertical pipe segments

Fundamental Equations

Total Pressure Drop

Ξ”Ptotal=Ξ”Pfriction+Ξ”Pelevation\Delta P_{total} = \Delta P_{friction} + \Delta P_{elevation}

For producers (flow upward), both terms are positive (pressure decreases from bottom to top).

For injectors (flow downward), friction is positive but elevation is negative (hydrostatic head assists flow).


Reynolds Number

The Reynolds number (NReN_{Re}) is a dimensionless ratio of inertial to viscous forces:

NRe=ρ⋅vβ‹…dΞΌN_{Re} = \frac{\rho \cdot v \cdot d}{\mu}

It determines the flow regime:

Reynolds NumberFlow RegimeCharacteristics
NRe<2100N_{Re} < 2100LaminarSmooth, orderly flow
2100<NRe<40002100 < N_{Re} < 4000TransitionUnstable, intermittent turbulence
NRe>4000N_{Re} > 4000TurbulentChaotic, fully mixed flow

Liquid Flow (Incompressible)

For liquid (incompressible) flow:

NRe=1.48β‹…QL⋅ρLdβ‹…ΞΌLN_{Re} = \frac{1.48 \cdot Q_L \cdot \rho_L}{d \cdot \mu_L}

ParameterSymbolUnits
Liquid flow rateQLQ_Lbbl/d
Liquid densityρL\rho_Llb/ft³
Pipe inner diameterddin
Liquid viscosityΞΌL\mu_LcP

Excel Function: ReynoldsNumberLiquid

=ReynoldsNumberLiquid(Ql, Rho_l, pipeID, Ul)

Gas Flow (Compressible)

For gas (compressible) flow:

NRe=20.09β‹…Qgβ‹…Ξ³gdβ‹…ΞΌgN_{Re} = \frac{20.09 \cdot Q_g \cdot \gamma_g}{d \cdot \mu_g}

ParameterSymbolUnits
Gas flow rateQgQ_gmscf/d
Gas specific gravityΞ³g\gamma_gdimensionless (air = 1.0)
Pipe inner diameterddin
Gas viscosityΞΌg\mu_gcP

Excel Function: ReynoldsNumberGas

=ReynoldsNumberGas(Qg, SGgas, pipeID, Ug)

Friction Factor

The Fanning friction factor (ff) relates wall shear stress to the fluid's kinetic energy.

Laminar Flow (NRe<2100N_{Re} < 2100)

For laminar flow, the friction factor is independent of pipe roughness:

f=16NRef = \frac{16}{N_{Re}}

Turbulent Flow (NRe>2100N_{Re} > 2100)

For turbulent flow, the Chen equation (1979) provides an explicit approximation to the implicit Colebrook-White equation:

1f=βˆ’4log⁑10[Ξ΅/d3.7065βˆ’5.0452NRelog⁑10((Ξ΅/d)1.10982.8257+(7.149NRe)0.8981)]\frac{1}{\sqrt{f}} = -4 \log_{10}\left[\frac{\varepsilon/d}{3.7065} - \frac{5.0452}{N_{Re}} \log_{10}\left(\frac{(\varepsilon/d)^{1.1098}}{2.8257} + \left(\frac{7.149}{N_{Re}}\right)^{0.8981}\right)\right]

Where:

  • Ξ΅/d\varepsilon/d = relative pipe roughness (dimensionless)

Pipe Roughness Values

Pipe MaterialAbsolute Roughness Ξ΅\varepsilon (ft)Typical Ξ΅/d\varepsilon/d
Drawn tubing0.0000050.00001 - 0.0001
Commercial steel0.000150.0001 - 0.001
Galvanized iron0.00050.0005 - 0.002
Cast iron0.000850.001 - 0.005
Concrete0.001 - 0.010.002 - 0.02
Riveted steel0.003 - 0.030.005 - 0.05

Note: Relative roughness Ξ΅/d\varepsilon/d = (absolute roughness) / (pipe inner diameter)


Frictional Pressure Drop

Fanning Equation

The Fanning equation calculates frictional pressure drop for incompressible flow:

Ξ”Pf=2β‹…f⋅ρ⋅v2β‹…Lgcβ‹…d\Delta P_f = \frac{2 \cdot f \cdot \rho \cdot v^2 \cdot L}{g_c \cdot d}

Where:

  • ff = Fanning friction factor
  • ρ\rho = fluid density, lb/ftΒ³
  • vv = flow velocity, ft/s
  • LL = pipe length, ft
  • dd = pipe inner diameter, ft
  • gcg_c = gravitational constant = 32.174 (lbmΒ·ft)/(lbfΒ·sΒ²)

The result is in psi when proper unit conversions are applied.

Excel Function: FrictionPressureDropLiquid

=FrictionPressureDropLiquid(Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength)
ParameterDescriptionUnits
QlLiquid ratebbl/d
UlLiquid viscositycP
Rho_lLiquid densitylb/ftΒ³
pipeIDPipe inner diameterin
pipeRoughnessRelative roughnessdimensionless
pipeLengthPipe lengthft

Elevation Pressure Drop

Potential Energy Change

For inclined or vertical pipes, the elevation pressure drop accounts for gravitational potential energy:

Ξ”Pelev=ρ⋅Lβ‹…sin⁑(ΞΈ)144\Delta P_{elev} = \frac{\rho \cdot L \cdot \sin(\theta)}{144}

ParameterSymbolUnits
Fluid densityρ\rholb/ft³
Pipe lengthLLft
Pipe angle from horizontalΞΈ\thetadegrees

Sign Convention:

  • ΞΈ=0Β°\theta = 0Β° β€” Horizontal flow (no elevation change)
  • ΞΈ=+90Β°\theta = +90Β° β€” Vertical upward (producer)
  • ΞΈ=βˆ’90Β°\theta = -90Β° β€” Vertical downward (injector)

Excel Function: PotentialEnergyPressureDropLiquid

=PotentialEnergyPressureDropLiquid(Rho_l, pipeLength, pipeAngle)

Complete Pressure Calculations

Liquid Flow

Inlet Pressure from Outlet:

Pin=Pout+Ξ”Pfriction+Ξ”PelevationP_{in} = P_{out} + \Delta P_{friction} + \Delta P_{elevation}

Excel Function: InletPipePressureLiquid

=InletPipePressureLiquid(P_out, Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength, pipeAngle)

Outlet Pressure from Inlet:

Pout=Pinβˆ’Ξ”Pfrictionβˆ’Ξ”PelevationP_{out} = P_{in} - \Delta P_{friction} - \Delta P_{elevation}

Excel Function: OutletPipePressureLiquid

=OutletPipePressureLiquid(P_in, Ql, Ul, Rho_l, pipeID, pipeRoughness, pipeLength, pipeAngle)

Gas Flow

Gas flow requires special treatment because gas is compressible β€” density varies with pressure along the pipe.

Horizontal Gas Flow (ΞΈ=0\theta = 0):

P12=P22+1.007Γ—10βˆ’4β‹…Ξ³gβ‹…fβ‹…ZΛ‰β‹…TΛ‰β‹…Qg2β‹…Ld5P_1^2 = P_2^2 + \frac{1.007 \times 10^{-4} \cdot \gamma_g \cdot f \cdot \bar{Z} \cdot \bar{T} \cdot Q_g^2 \cdot L}{d^5}

Inclined Gas Flow (ΞΈβ‰ 0\theta \ne 0):

P12=eβˆ’sβ‹…P22βˆ’2.685Γ—10βˆ’3β‹…(1βˆ’eβˆ’s)β‹…fβ‹…(ZΛ‰β‹…TΛ‰β‹…Qg)2sin⁑θ⋅d5P_1^2 = e^{-s} \cdot P_2^2 - 2.685 \times 10^{-3} \cdot (1 - e^{-s}) \cdot \frac{f \cdot (\bar{Z} \cdot \bar{T} \cdot Q_g)^2}{\sin\theta \cdot d^5}

Where the elevation parameter:

s=βˆ’0.0375β‹…Ξ³gβ‹…sin⁑θ⋅LZΛ‰β‹…TΛ‰s = -\frac{0.0375 \cdot \gamma_g \cdot \sin\theta \cdot L}{\bar{Z} \cdot \bar{T}}

ParameterSymbolUnits
Inlet pressureP1P_1psia
Outlet pressureP2P_2psia
Gas specific gravityΞ³g\gamma_gdimensionless
Fanning friction factorffdimensionless
Mean Z-factorZˉ\bar{Z}dimensionless
Mean temperatureTˉ\bar{T}°R
Gas flow rateQgQ_gmscf/d
Pipe lengthLLft
Pipe diameterddin

Excel Function (Inlet from Outlet): InletPipePressureGas

=InletPipePressureGas(Qg, P_out, pipeLength, pipeID, pipeAngle, pipeRoughness, zFactor, T, SGgas, Ug)

Excel Function (Outlet from Inlet): OutletPipePressureGas

=OutletPipePressureGas(Qg, P_in, pipeLength, pipeID, pipeAngle, pipeRoughness, zFactor, T, SGgas, Ug)

Input Validation

ParameterValid RangeTypical Values
Flow rate (liquid)β‰₯ 0 bbl/d100 - 50,000
Flow rate (gas)β‰₯ 0 mscf/d100 - 100,000
Pipe ID> 0 in2 - 24
Pipe lengthβ‰₯ 0 ft100 - 50,000
Pipe angle-90Β° to +90Β°0Β° (horizontal)
Roughness> 00.0001 - 0.01
Density> 0 lb/ftΒ³40 - 70 (oil), 62 (water)
Viscosity> 0 cP0.5 - 100 (liquid), 0.01 - 0.03 (gas)
Z-factor> 00.7 - 1.0
Gas SG> 00.55 - 1.2

Limitations

Single-Phase Assumptions

  • No phase change β€” liquid stays liquid, gas stays gas
  • Newtonian fluid β€” viscosity independent of shear rate
  • Steady-state flow β€” constant flow rate and conditions
  • Isothermal β€” temperature constant along pipe (or use average)

When to Use Multiphase Correlations

  • Oil and gas flow together
  • Condensate drops out of gas
  • Water cuts present
  • Two-phase flow expected

See PipeFlow Overview for multiphase correlation selection.



References

  1. Chen, N.H. (1979). "An Explicit Equation for Friction Factor in Pipe." Industrial & Engineering Chemistry Fundamentals, Vol. 18, No. 3, pp. 296-297.

  2. Economides, M.J., Hill, A.D., Ehlig-Economides, C., and Zhu, D. (2013). Petroleum Production Systems, 2nd Edition. Prentice Hall.

  3. Brill, J.P. and Mukherjee, H. (1999). Multiphase Flow in Wells. SPE Monograph Vol. 17.

  4. Brown, K.E. (1984). The Technology of Artificial Lift Methods, Vol. 1. PennWell Books.

  5. Moody, L.F. (1944). "Friction Factors for Pipe Flow." Transactions of the ASME, Vol. 66, pp. 671-684.

Pipe Flow
pipe flowsingle phaseReynolds numberfriction factorpressure dropFanning equation
Can't find what you're looking for?Request Documentation
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy