Theory

Bubble Point Pressure Correlations

Overview

The bubble point pressure (PbP_b) is the pressure at which the first bubble of gas evolves from an oil at reservoir temperature. This thermodynamic property is fundamental to reservoir characterization:

  • Phase behavior prediction β€” distinguishes undersaturated from saturated flow conditions
  • Material balance calculations β€” determines oil compressibility above versus below PbP_b
  • Production forecasting β€” gas evolution affects mobility ratios and recovery
  • Facilities design β€” separator sizing requires saturation pressure knowledge

When laboratory PVT data are unavailable, engineers rely on empirical correlations derived from regression analysis of measured datasets.

Physical Significance

At the bubble point:

  • Reservoir oil transitions from a single-phase liquid to a two-phase gas-liquid system
  • Solution gas begins evolving from the oil phase
  • Oil compressibility changes discontinuously
  • Formation volume factor reaches its maximum value (BobB_{ob})

The bubble point pressure depends on:

PropertyEffect on PbP_b
Solution gas-oil ratio (RsR_s)Higher RsR_s β†’ higher PbP_b
Gas specific gravity (Ξ³g\gamma_g)Higher Ξ³g\gamma_g β†’ higher PbP_b
Oil API gravity (Ξ³API\gamma_{API})Higher API β†’ lower PbP_b
Temperature (TT)Higher TT β†’ higher PbP_b

Correlation Equations

All correlations covered here solve the inverse problem: given measured RsR_s, Ξ³g\gamma_g, Ξ³API\gamma_{API}, and TT, calculate PbP_b.

Standing (1947)

The earliest widely-used correlation, developed from 105 California crude oil samples:

Pb=18.2[(RsΞ³g)0.83100.00091 T100.0125 γAPIβˆ’1.4]P_b = 18.2 \left[ \left( \frac{R_s}{\gamma_g} \right)^{0.83} \frac{10^{0.00091 \, T}}{10^{0.0125 \, \gamma_{API}}} - 1.4 \right]

Where:

  • PbP_b = bubble point pressure, psia
  • RsR_s = solution gas-oil ratio, scf/STB
  • Ξ³g\gamma_g = gas specific gravity (air = 1.0)
  • Ξ³API\gamma_{API} = oil API gravity, Β°API
  • TT = temperature, Β°F

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.590.95
Ξ³API\gamma_{API}16.563.8
RsR_s201,425 scf/STB
TT100258 Β°F
PbP_b1307,000 psia

Vasquez and Beggs (1980)

Developed from over 5,000 data points with API gravity-dependent coefficients:

Pb=[RsC1 γg exp⁑(C3 γAPIT+459.67)]1/C2P_b = \left[ \frac{R_s}{C_1 \, \gamma_g \, \exp \left( \frac{C_3 \, \gamma_{API}}{T + 459.67} \right)} \right]^{1/C_2}

Coefficients:

API RangeC1C_1C2C_2C3C_3
Ξ³API≀30\gamma_{API} \le 300.03621.093725.724
Ξ³API>30\gamma_{API} > 300.01781.18723.931

Where:

  • TT = temperature, Β°F (converted to Β°R with +459.67)

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.5111.351
Ξ³API\gamma_{API}15.359.5
RsR_s105,000 scf/STB
TT60300 Β°F
PbP_b2006,000 psia

GlasΓΈ (1980)

Developed from 45 North Sea crude oil samples using a correlation factor Pbβˆ—P_b^*:

Pbβˆ—=(RsΞ³g)0.816T0.172 γAPIβˆ’0.989P_b^* = \left( \frac{R_s}{\gamma_g} \right)^{0.816} T^{0.172} \, \gamma_{API}^{-0.989} Pb=10 1.7669+1.7447log⁑Pbβˆ—βˆ’0.30218(log⁑Pbβˆ—)2P_b = 10^{\, 1.7669 + 1.7447 \log P_b^* - 0.30218 (\log P_b^*)^2}

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.651.276
Ξ³API\gamma_{API}22.348.1
RsR_s902,637 scf/STB
TT80280 Β°F
PbP_b1657,142 psia

Al-Marhoun (1988)

Developed from 160 Middle East crude oil samples:

Pb=5.38088Γ—10βˆ’3 Rs0.715082 γgβˆ’1.87784 γo3.1437 (T+460)1.32657P_b = 5.38088 \times 10^{-3} \, R_s^{0.715082} \, \gamma_g^{-1.87784} \, \gamma_o^{3.1437} \, (T + 460)^{1.32657}

Where:

  • Ξ³o\gamma_o = oil specific gravity = 141.5131.5+Ξ³API\frac{141.5}{131.5 + \gamma_{API}}
  • TT = temperature, Β°F (converted to Β°R with +460)

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.7521.367
Ξ³API\gamma_{API}19.444.6
RsR_s261,602 scf/STB
TT74240 Β°F
PbP_b1303,573 psia

Petrosky and Farshad (1993)

Developed from Gulf of Mexico crude oil samples:

X=7.916Γ—10βˆ’4 γAPI1.5410βˆ’4.561Γ—10βˆ’5 T1.3911X = 7.916 \times 10^{-4} \, \gamma_{API}^{1.5410} - 4.561 \times 10^{-5} \, T^{1.3911} Pb=112.727 Rs0.577421Ξ³g0.8439 10Xβˆ’1391.051P_b = \frac{112.727 \, R_s^{0.577421}}{\gamma_g^{0.8439} \, 10^X} - 1391.051

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.7521.367
Ξ³API\gamma_{API}19.444.6
RsR_s261,602 scf/STB
TT74240 Β°F
PbP_b1303,573 psia

Dokla and Osman (1992)

Developed from UAE crude oil samples:

Pb=8363.86 Rs0.724047 γgβˆ’1.01049 γo0.107991 (T+460)βˆ’0.952584P_b = 8363.86 \, R_s^{0.724047} \, \gamma_g^{-1.01049} \, \gamma_o^{0.107991} \, (T + 460)^{-0.952584}

Where:

  • Ξ³o\gamma_o = oil specific gravity = 141.5131.5+Ξ³API\frac{141.5}{131.5 + \gamma_{API}}

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.7521.367
Ξ³API\gamma_{API}19.444.6
RsR_s261,602 scf/STB
TT74240 Β°F
PbP_b1303,573 psia

Dindoruk and Christman (2004)

Developed from Gulf of Mexico deepwater crude oils using complex regression:

A=a1 Ta2+a3 γAPIa4(a5+2 Rsa6Ξ³ga7)2A = \frac{a_1 \, T^{a_2} + a_3 \, \gamma_{API}^{a_4}}{\left( a_5 + \frac{2 \, R_s^{a_6}}{\gamma_g^{a_7}} \right)^2} Pb=a8[Rsa9Ξ³ga10β‹…10A+a11]P_b = a_8 \left[ \frac{R_s^{a_9}}{\gamma_g^{a_{10}}} \cdot 10^A + a_{11} \right]

Coefficients:

CoefficientValue
a1a_11.42828Γ—10βˆ’101.42828 \times 10^{-10}
a2a_22.844591797
a3a_3βˆ’6.74896Γ—10βˆ’4-6.74896 \times 10^{-4}
a4a_41.225226436
a5a_50.033383304
a6a_6βˆ’0.272945957
a7a_7βˆ’0.084226069
a8a_81.869979257
a9a_91.221486524
a10a_{10}1.370508349
a11a_{11}0.011688308

Applicability Range:

ParameterMinMax
Ξ³g\gamma_g0.60171.0270
Ξ³API\gamma_{API}14.740.0
RsR_s1333,050 scf/STB
TT117276 Β°F
PbP_b92612,230 psia

Functions Covered

The following functions implement these bubble point correlations. See each function page for detailed parameter definitions, Excel syntax, and usage examples.

FunctionCorrelationRegional Basis
PboStandingStanding (1947)California
PboVasquezBeggsVasquez-Beggs (1980)Multiple regions
PboGlasoGlasΓΈ (1980)North Sea
PboAlMarhounAl-Marhoun (1988)Middle East
PboPetroskyFarshadPetrosky-Farshad (1993)Gulf of Mexico
PboDindorukChristmanDindoruk-Christman (2004)Deepwater GOM
PboDoklaOsmanDokla-Osman (1992)UAE

Correlation Selection Guidelines

By Region

Oil SourceRecommended Correlation
CaliforniaStanding (1947)
North SeaGlasΓΈ (1980)
Middle EastAl-Marhoun (1988)
Gulf of Mexico (shelf)Vasquez-Beggs (1980) or Petrosky-Farshad (1993)
Deepwater GOMDindoruk-Christman (2004)
UAEDokla-Osman (1992)

By Fluid Properties

Fluid CharacteristicRecommended Correlation
Low GOR (Rs<200R_s < 200)Standing, Al-Marhoun
High GOR (Rs>1000R_s > 1000)Dindoruk-Christman, Vasquez-Beggs
Light oil (Ξ³API>40\gamma_{API} > 40)Standing, GlasΓΈ
Heavy/Medium oil (Ξ³API<30\gamma_{API} < 30)Vasquez-Beggs, Al-Marhoun
High-pressure reservoirDindoruk-Christman

Statistical Performance

Based on the Brazilian Campos Basin study comparing 20 correlations:

CorrelationAARE (%)Best For
Vasquez-Beggs7-12General-purpose
Al-Marhoun8-15Middle East analogs
Standing10-18Light California-type oils
GlasΓΈ12-20North Sea analogs

Note: Statistical performance varies significantly by dataset. Regional correlations typically outperform global correlations when applied to their development region.



References

  1. Standing, M.B. (1947). "A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases." Drilling and Production Practice, API, pp. 275-287.

  2. Vazquez, M. and Beggs, H.D. (1980). "Correlations for Fluid Physical Property Prediction." Journal of Petroleum Technology, 32(6), pp. 968-970.

  3. Glasø, Ø. (1980). "Generalized Pressure-Volume-Temperature Correlations." Journal of Petroleum Technology, 32(5), pp. 785-795.

  4. Al-Marhoun, M.A. (1988). "PVT Correlations for Middle East Crude Oils." Journal of Petroleum Technology, 40(5), pp. 650-666.

  5. Petrosky, G.E. and Farshad, F.F. (1993). "Pressure-Volume-Temperature Correlations for Gulf of Mexico Crude Oils." SPE Reservoir Engineering, 8(4), pp. 416-420.

  6. Dokla, M.E. and Osman, M.E. (1992). "Correlation of PVT Properties for UAE Crudes." SPE Formation Evaluation, 7(1), pp. 41-46.

  7. Dindoruk, B. and Christman, P.G. (2004). "PVT Properties and Viscosity Correlations for Gulf of Mexico Oils." SPE Reservoir Evaluation & Engineering, 7(6), pp. 427-437.

  8. Santos, R.G., Silva, J.A., Mehl, A., and Experiment, P.E. (2019). "Comparison of PVT Correlations with PVT Laboratory Data from the Brazilian Campos Basin." Brazilian Journal of Petroleum and Gas, 13(3), pp. 129-157.

PVT Properties
PVTsaturation pressurebubble pointcorrelationscrude oil
This website uses cookies to enhance your experience and analyze site usage. By clicking "Accept", you consent to the use of cookies for analytics purposes. Read our privacy policy