Draining of a cylindrical tank

Input(s)

\(\mu\): Fluid Viscosity \((\mathrm{kg} /(\mathrm{ms}))\)

L: Height of the Pipe (m)

H: Height of the Cylindrical Tank (m)

D: Diameter of the Pipe (m)

\(\mathrm{R}\): Radius of the Cylindrical Tank (m)

\(\rho\): Fluid Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)

g: Gravitational Acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)

Output(s)

\(\boldsymbol{t}_{\text {efflux }}\): Efflux Time (s)

Formula(s)

\[ \mathrm{t}_{\text {efflux }}=\frac{128 * \mu * \mathrm{~L} * \mathrm{R}^{2}}{\rho * \mathrm{~g} * \mathrm{D}^{4}} * \ln \left(1+\frac{\mathrm{H}}{\mathrm{L}}\right) \]

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 7, Page: 228.


Related

An unhandled error has occurred. Reload 🗙